Friday, July 31, 2020

Alternative hypotheses and the Gautham Transform

As I have mentioned several times, having Gautham in the lab really changed how I think about science. In particular, I learned a lot about how to take a more critical approach to science. I think this has made me a far better and more rigorous scientist, and I want to impart those lessons to all members of the lab.

The most important thing I learned from Gautham was to consider alternative hypotheses. I know this sounds like duh, that’s what I learn in my RCR meetings, “expected outcomes and potential pitfalls” sections of grants, and boring classes on how to do science, but I think that’s because we so rarely see how powerful it is in practice. I think it was one of Gautham’s favorite pastimes, and really exemplified his scientific aesthetic (indeed, he was very well known for demonstrating some alternative hypotheses for carrier multiplication, I believe). There were many, many times Gautham proposed alternative hypotheses in our lab, and it was always illuminating. Indeed, one of the main points of his second paper from the lab was about how one could explain “fluctuations between states” by simple population dynamics without any state switching—a whole paper’s worth of alternative hypothesis!

Why do we generally fail to consider alternative hypotheses? One reason is that it’s scary and not fun. Generally, the hypothesis you want to consider is the option that is the fun one. It is scary to contemplate the idea that something fun might turn out to be something boring. (Gautham and I used to joke that the “Gautham Transform” was taking something seemingly interesting and showing that it was actually boring.) The truth of it, though, is that most things are boring. Sure, in biology, there are a lot more surprises than in, say, physics, but there are still far fewer interesting things than are generally claimed. I think that we would all do better to come in with a stronger prior belief that most findings actually have a boring explanation, and a critical implementation of that belief is to propose alternative hypotheses. Keep in mind also that when we are trained, we typically are presented with a list of facts with no alternatives. This manner of pedagogy leaves most of us with very little appreciation for all the wrong turns that comprise science as it’s being made as opposed to the little diagrams in the textbooks.

The other reason we fail to consider alternatives is that it’s a lot of work. It’s always going to be harder to spend as much time actively thinking of ways to show that your pet theory is incorrect, and so in my experience it’s usually more work to come up with plausible alternative hypotheses. Usually, this difficulty manifests as a proclamation of “there’s just no other way it could be!” Thing is… there’s ALWAYS an alternative hypothesis. All models are wrong. You may get to a point where you just get tired, or the alternatives seem too outlandish, but there’s always another alternative to exclude. I remember as we were wrapping up our transcriptional-scaling-with-cell-size manuscript, we got this cool result suggesting that transcription was cut in half upon DNA replication (decrease in burst frequency). I was really into this idea, and Gautham was like, that’s really weird, there must be some other explanation. I was like, I can’t think of one, and I remember him saying “Well, it’s hard, but there has to be something, what you’re proposing is really weird”. So… I spent a couple days thinking about it, and then, voila, an alternative! (The alternative was a global decrease in transcription in S-phase, which Olivia eliminated with a clever experiment measuring transcription from a late-replicating gene.) Point is, it’s hard but necessary work.

(Note: I’m wondering about ways to actively encourage people to consider alternatives on a more regular basis. One suggestion was to stop, say, group meeting somewhere in the middle and just explicitly ask everyone to think of alternatives for a few minutes, then check in. Another option (HT Ben Emert) is to have a lab buddy who’s job is to work with you to challenge hypotheses. Anybody have other thoughts?)

So when do you stop making alternatives? I think that’s largely a matter of taste. At some point, you have to stand by a model you propose, exclude as many plausible alternatives as you can, and then acknowledge that there are other possible explanations for what you see that you just didn’t think of. Progress continues, excluding one alternative at a time…

1 comment:

  1. These days I've been taken by John Carmack's way of talking about ideas https://www.youtube.com/watch?v=dSCBCk4xVa0 . He famously had to try and reject all kinds of things to get Quake to be sufficiently performant. Kent Beck (who introduced him!) summarizes it in https://www.facebook.com/notes/kent-beck/john-carmacks-deep-thoughts-ideas-work-and-emotion/1051813558184841/

    ReplyDelete